31, 1163 (1975); Review: T. Eicher and J. L. Weber, Fortschr. Chem. Forsch., 57, 1 (1969).
(2) For synthetic approaches to the parent hydrocarbon see: (a) T. C. Shields and P. D. Gardner, J. Am. Chem. Soc., 89, 5425 (1967); (b) I. S. Krull, P. F. D'Angelo, D. R. Arnold, E. Hedaya, and P. O. Schissel, Tetrahedron Lett., 771 (1971).
(3) The stability of methylenecyclopropene is markedly affected by the introduction of electron-withdrawing groups at the exocyclic position, which result in stabilization of the dipolar form i.

$$
\Delta \leftrightarrow \underset{i}{\oint^{-}}
$$

(4) (a) E. V. Dehmlow, Chem. Ber., 101, 410 (1968); (b) J. P. Zahra and B. Waegell, Tetrahedron Lett., 2537 (1970); W. E. Billups, T. C. Shields, W. Y. Chow, and N. C. Deno, J. Org. Chem., 37, 3676 (1972).
(5) Compounds 1 a and 1 b would be expected to derive their stability from steric shielding provided by the tert-butyl groups. For similar stabilization of labile systems see: (a) R. L. Camp and F. D. Greene, J. Am. Chem. Soc., 90, 7349 (1968); (b). J. K. Crandall and W. H. Machleder, ibid., 90, 7347 (1968); (c) J. F. Pazos and F. D. Green, ibid., 89, 1030 (1967); (d) G. Maier and A. Alzerreca, Angew. Chem., Int. Ed. Engl., 12, 1015 (1973).
(6) $2 \mathbf{a}^{7}$ (bp $64-68^{\circ} \mathrm{C} 0.3 \mathrm{~mm}$) was prepared in 25% yield by addition of dibromocarbene ($\mathrm{CHBr}_{3}, \mathrm{KO}-t$-Bu, pentane, $0-5{ }^{\circ} \mathrm{C}$) to 1,3 -di-tert-butylallene. ${ }^{8}$ Unreacted allene (65%) was also recovered. Spectral data: NMR $\left(\mathrm{CCl}_{4}\right) \delta 1.14,1.16(2 \mathrm{~s}, 18 \mathrm{H}), 2.25(\mathrm{~d}, 1 \mathrm{H}, J=3 \mathrm{~Hz})$, and $6.36(\mathrm{~d}, 1 \mathrm{H}, J$ $=3 \mathrm{~Hz})$; MS $321.9889\left(\mathrm{M}^{+}\right)$, calcd 321.9931 .
(7) The stereochemical assignment of 2 a is made with the expectation that the dibromocarbene would attack from the less hindered side of the allene.
(8) W. T. Borden and E. J. Corey, Tetrahedron Lett, 313 (1969).
(9) $\mathbf{2 b}$ was prepared in about 85% yield by treating 2 a with HBr in CCl_{4} at 25 ${ }^{\circ} \mathrm{C}$ for 17 h followed by purification by preparative TLC (silica gel, CCl_{4}). Spectral data: NMR ($\left.\mathrm{CHCl}_{3}-d\right) \delta 1.07(\mathrm{~s}, 9 \mathrm{H}), 1.27(\mathrm{~s}, 9 \mathrm{H}), 2.10(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}$ $=3 \mathrm{~Hz}$), $5.75(\mathrm{~d}, 1 \mathrm{H}, J=3 \mathrm{~Hz})$; MS $321.9891\left(\mathrm{M}^{+}\right)$, calcd 321.9931 .
(10) These compounds must be kept in solution at all times.
(11) The methylenecyclopropenes were added via a direct inlet system in THF at $-30^{\circ} \mathrm{C}$. Under these conditions, peaks with masses higher than the parent molecular ion were $<0.5 \%$ of the base peak ($\mathrm{M}^{+}-\mathrm{Me}$) and $<2 \%$ of the parent molecular ion.
(12) Spectral data: NMR $\left(\mathrm{CCl}_{4}\right) \delta 1.07(\mathrm{~s}, 9 \mathrm{H}), 1.30(\mathrm{~s}, 9 \mathrm{H})$, and $2.41(\mathrm{~s}, 2 \mathrm{H})$; ir (neat) 1637 and $1837 \mathrm{~cm}^{-1}$; MS $152.1570\left(\mathrm{M}^{+}-\mathrm{CO}\right)$, calcd 152. 1565.
(13) Spectral data: NMR $\left(\mathrm{CCl}_{4}\right) \delta 1.05(\mathrm{~s}, 9 \mathrm{H}), 1.14(\mathrm{~s}, 9 \mathrm{H})$, and $2.21(\mathrm{~s}, 2 \mathrm{H})$; ir (neat) 1687 and $2218 \mathrm{~cm}^{-1}$; MS $180.1510\left(\mathrm{M}^{+}\right)$, calcd 180.1514.
(14) We thank Professor Barry Trost for suggesting this catalyst.
(15) The major product was a nonvolatile oil Volatile products were separated from the oil by preparative TLC (silica gel, CCl_{4}). GC ($10 \% \mathrm{SE}-30$ on Anakrom ABS, $95^{\circ} \mathrm{C}$) showed five products. Compound 8 , which was purified by preparative GC, accounted for $\sim 75 \%$ of the mixture.
(16) Alfréd P. Sloan Foundation Fellow, 1973-1975.
(17) Note Added in Proof. For the synthesis of other simple methylenecyclopropenes see: P. J. Stang and M. G. Mangum, J. Am. Chem. Soc., 26, 3854 (1975).

W. E. Billups, ${ }^{16}$ A. J. Blakeney
Department of Chemistry, Rice University
Houston, Texas 77001
Received July 10, 1975

Directional Specificity and Stereoselectivity in the Metathesis of a Trisubstituted Olefin

Sir:
While the metathesis of trisubstituted olefins should give the products in eq la rather than those in eq $1 \mathrm{~b},{ }^{1-3}$ the only indication this is true is the observation that 1 -methylcyclobutene gives a polymer that is almost "perfectly alternating";
it is largely polyisoprene. ${ }^{1}$ In this case reaction according to eq la outstrips that according to eq 1 b by a factor of 10.1 ± 1.2.

While the directional specificity of additions to substituted cyclobutenes is not known, it might be lower than for additions to other cycloalkenes, since alkyl substitution stabilizes carbenium ions less in four-membered rings than in rings of other sizes. ${ }^{4,5}$ Accordingly, the directional specificity in metatheses of alkyl cycloalkenes in rings larger than four might be greater. But this is difficult to test because no trisubstituted olefin other than 1 -methylcyclobutene has been found to undergo metathesis, ${ }^{6}$ although attempts have been made with 1-methylcyclopentene, ${ }^{1,9,10 a}$ 1-methyl-cis-cyclooctene, ${ }^{9}$ trimethylethylene, ${ }^{10 \mathrm{~b}}$ and cis-polyisoprene. ${ }^{10 \mathrm{a}}$

However, we have found that 1-methyl-trans-cyclooctene does undergo the reaction, and it yields a polymer that within the limits of detection of our spectrometer is perfectly alternating (eq 2). Thus to the extent that this reaction is a valid

measure, the selectivity for eq 1 a is >50 times that for eq 1 b . The experiments also show the stereochemistry of trisubstituted olefin metathesis (E-olefins yield mainly E-products) and indicate the presence of the metathesis initiator at the ends of the polymer chains.

1-Methyl-trans-cyclooctene ${ }^{11}$ ($\geq 98 \%$ trans, $612 \mathrm{mg}, 5$ mmol) and (diphenylcarbene) pentacarbonyltungsten ${ }^{12}$ (122 $\mathrm{mg}, 0,25 \mathrm{mmol}$) in an evacuated ampule at $50^{\circ} \mathrm{C}$ for 23 h gave a polymer, which was dissolved in CCl_{4}, purified by thin layer chomatography (TLC) on silica gel (hexane eluent), and extracted from the origin of the TLC plate by $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The yield of poly(1-methyl-1-octene-1,8-diyl) was 300 mg (49%). The ${ }^{13} \mathrm{C}$ nuclear magnetic resonance (${ }^{13} \mathrm{C}$ NMR) spectrum (Table I) exhibits 11 peaks of the 18 theoretically distinguishable for E and Z isomers, but none at ca. $18.2,{ }^{1} 36.3,{ }^{15} 33.8,{ }^{16}$ or 131^{16} ppm , where the head-to-head and tail-to-tail coupling products of eq 1 b should have had characteristic resonances. Since such peaks would have been observed if they had been 4% as intense

Table I, ${ }^{13} \mathrm{C}$ NMR Spectrum of Poly(1-methyl-1-octene-1,8-diyl) in CDCl_{3} at $60^{\circ} \mathrm{C}^{b}$

Chemical shift	${\text { Assignment }{ }^{a}}^{\text {Chemical shift }}$	Assignment ${ }^{a}$	
135.32	$1 Z$	29.32	5 and $6 E$ and Z
135.08	$1 E$	31.86	$8 Z$
125.35	$2 Z$	39.79	$8 E$
124.63	$2 E$	23.39	$9 Z$
28.11	$3 E$ and Z	15.92	$9 E$
29.96	4 and $7 E$ and Z		

[^0]as a single carbon resonance, reaction la occurs at least 50 times as often as reaction 1 b .

The percentages of E and Z isomers, measured by the intensities of the ${ }^{13} \mathrm{C}$ NMR signals ${ }^{18}$ of carbons 2,8 , and 9 , was $76 \pm 1 \% E$ and $24 \pm 1 \% Z$. This measurement, as well as the structure of the polymer, is confirmed by the proton NMR spectrum, which exhibits five peaks, ${ }^{20}$ the intensities of those (at $\delta 1.57$ and 1.67) assigned to the methyls in the E and Z isomers ${ }^{21}$ are 73:27,

While the directional specificity may be a consequence of carbenium ion stabilization by alkyl substituents, the stereochemical selectivity for forming the E stereoisomer may reflect the lesser 1,3-diaxial interaction, indicated in structure I, of a methyl group with another that is unsubstituted, ${ }^{22}$

A significant characteristic of the polymer is its absorption in the ultraviolet spectrum with a maximum at 245 nm . This is where 1,1 -diphenyl-1-propene exhibits its ultraviolet $a b$ sorption maximum ($\epsilon 14000$) and the intensities indicate one diphenylethene for every 70 methylcyclooctenes. Since the number average molecular weight measured by gel permeation chromatography is 6800 (the weight av mol wt is 15500), ${ }^{23,26}$ the average chain has, according to these figures, just under one diphenylethene attached to it $(6800 /(70 \times 124)=0.8)$, This is one of the best indications that the mechanism of olefin metathesis is a chain reaction in which a metal-carbene is the chain carrier. ${ }^{2 b, 27}$

Also that, as demonstrated above, an isolable metal-carbene without cocatalysts induces olefin metathesis is in accord with this hypothesis. The generality of this phenomenon is indicated by the discovery that metatheses of disubstituted olefins can be induced similarly by small amounts of (diphenylcarbene)pentacarbonyltungsten ${ }^{7,28}$ and by (phenylmethoxycarbene)pentacarbonyltungsten. ${ }^{29}$

Acknowledgment. We are grateful to Iwao Miura for the NMR spectra.

References and Notes

(1) T. J. Katz, J. McGinnis, and C. Altus, J. Am. Chem. Soc., 98, 606 (1976).
(2) (a) J. McGinnis, T. J. Katz, and S. Hurwitz, J. Am. Chem. Soc., 98, 605 (1976); (b) T. J. Katz and J. McGinnis, ibid., 97, 1592 (1975).
(3) M. T. Mocella, M. A. Busch, and E. L. Muetterties, J. Am. Chem. Soc., 98, 1283 (1976).
(4) K. B. Wiberg and W. Chen, J. Am. Chem. Soc., 96, 3900 (1974).
(5) The rates at which 1- and 2-methylcyclobutyl derivatives solvolyze are similar. See ref 4 and unpublished results of K. B. Wiberg and G. L. Nelson referred to by K. B. Wiberg, B. A. Hess, Jr., and A. H. Ashe, Ill in "Carbonium lons", G. Olah and P. V. R. Schleyer, Ed., Vol. III, Wiley, New York, N. Y., 1972.
(6) Reactions of trisubstituted olefins with less substituted olefins do succeed. ${ }^{7,8}$
(7) J. McGinnis, Dissertation, Columbia University, 1976.
(8) C. P. Pinazzi, I. Guilmet, and D. Reyx, Tetrahedron Lett., 989 (1976).
(9) (Diphenylcarbene)pentacarbonyltungsten at $50^{\circ} \mathrm{C}$ fails to induce the reactions of 1 -methylcyclopentene (ref 7 and N. Acton, unpublished experiments) and 1-methyl-cis-cyclooctene (S. J. Lee, unpublished experiments).
(10) (a) G. Pampus, J. Witte, and M. Hoffmann, Rev. Gen. Caoutch. Plast., 47, 1343 (1970); (b) A. Uchlda, Y. Hamano, Y. Mukal and S. Matsuda, Ind. Eng. Chem. Prod. Res. Dev., 10, 372 (1971).
(11) G. H. Whitham and A. J. Bridges, J. Chem. Soc., Chem. Commun., 142 (1974).
(12) C. P. Casey and T. J. Burkhardt, J. Am. Chem. Soc., 95, 5833 (1973).
(13) M. W. Duch and D. M. Grant, Macromolecules, 3, 165 (1970).
(14) H. Y. Chen, J. Polym. Sci., Polym. Lett. Ed., 12, 85 (1974).
(15) The allylic methylenes in Z - and E-4,5-dimethyl-4-octenes resonate at 36.25 and 36.63 ppm . ${ }^{7}$
(16) Polybutadiene resonances: see ref 13 and 17.
(17) J. Furukawa, E. Kobayashi, T. Kawagoe, N. Katsui, and M. Imanari, J. Polym. Sci., Polym. Lett. Ed., 11, 239 (1973).
(18) The spectrum was determined by Fourier transform spectroscopy using 60° pulses repeated only after long (7.0 s) intervals. Proton noise decoupling was applied only while the spectrum was being acquired. ${ }^{19}$
(19) G. C. Levy and U. Edlund, J. Am. Chem. Soc., 97, 4482(1975), and references cited therein.
(20) In CDCl_{3} at 100 MHz , chemical shifts in parts per million from $\mathrm{Me}_{4} \mathrm{Si}$ (intensities): $1.29(7.91 \mathrm{H}), 1.57(2.28 \mathrm{H}), 1.67(0.84 \mathrm{H}), 1.97(3.95 \mathrm{H}), 5.11$ ($0.95 \mathrm{H}, 6.4 \mathrm{~Hz}$ triplet).
(21) (a) H. Y. Chen, Anal. Chem., 34, 1793 (1962); (b) M. A. Golub, S. A. Fuqua, and N. S. Bhacca, J. Am. Chem. Soc., 84, 4981 (1962); (c) J. P. Kistler, G. Frledmann, and B. Kaempf, Bull. Soc. Chim. Fr., 4759 (1967); (d) Y. Tanaka et al., J. Polym. Sci., Part A-2, 9, 43 (1971).
(22) The polymer's stereochemistry probably has not been altered by doublebond isomerization as metatheses of unstrained trisubstituted olefins like cis-polyisoprene ${ }^{10 a}$ fall.
(23) The molecular weights measured assuming the polymer to be polystyrene, the calibration standard, were multiplied by 0.45 . This factor was the estimated ratio of the unperturbed dimensions, $\left\langle\mathrm{Lo}^{2}\right\rangle / M$, for polystyrene and poly(1-methyl-1-octene-1,8-diyl). The factor was used by analogy with the work of Dawkins et al. ${ }^{24}$ The estimate was made assuming $\left[\left\langle\mathrm{Lo}^{2}\right\rangle / M\right]^{1 / 2}$ to be $0.92 \AA$ for cis-polyisoprene and $1.07 \AA$ for polyethylene. ${ }^{25}$
(24) (a) J. V. Dawkins, Eur. Polym. J., 6, 831 (1970); (b) J. V. Dawkins, R. Denyer, and J. W. Maddock, Polymer, 10, 154 (1969).
(25) J. Brandrup and E. H. Immergut, Ed., "Polymer Handbook", 2d ed, Wiley, New York, N.Y., 1975.
(26) The chromatogram was determined by Dr. James Runyon, Dow Chemical U.S.A., Midland, Mich., using THF solvent and refractive index monitoring. We are grateful to him.
(27) (a) T. J. Katz and R. Rothchild, J. Am. Chem. Soc., 98, 2519 (1976); (b) C. P. Casey and T. J. Burkhardt, ibid., 96, 7808 (1974); (C) D. J. Cardin, M. J. Doyle, and M. F. Lappert, J. Chem. Soc., Chem. Commun., 927 (1972); (d) R. H. Grubbs, D. D. Carr, C. Hoppin, and P. L. Burk, J. Am. Chem. Soc., 98, 3478 (1976); (e) B. A. Dolgoplosk et al., Eur. Polym. J., 10, 901 (1974), Dokl. Chem., 216, 380 (1974); (f) J. L. Hérisson and Y. Chauvin, Makromol. Chem., 141, 161 (1970); (g) J.-P. Soufflet, D. Commereuc, and Y. Chauvin, C. R. Acad. Sci., Ser. C, 276, 169 (1973).
(28) T. J. Katz, S. J. Lee, and N. Acton, Tetrahedron Lett., in press.
(29) T. J. Katz and N. Acton, Tetrahedron Lett., in press.

Steven J. Lee, James McGinnis, Thomas J. Katz* Department of Chemistry, Columbia University New York, New York 10027

Received July 27, 1976

New Mechanistic Criterion for Early and Late Transition States

Sir:
Sauer et al.' have measured the rates of Diels-Alder reactions of polycyanoolefins as dienophiles. On going from acrylonitrile to tetracyanoethylene (TCNE), one observes a $4 \times$ 10^{7}-fold increase of the rate constant towards cyclopentadiene and a 1.5×10^{10}-fold increase vs. 9,10 -dimethylanthracene (Table I).

We compared the rate constants of $2+2$ cycloadditions of polycyanoolefins to isobutenyl methyl ether (1) with the above-mentioned $4+2$ cycloadditions. Cyclobutanes 4 were formed virtually quantitatively from 1,1-dicyano-, tricyano-,

4

[^0]: ${ }^{a}$ Chemical shifts are assigned carbons $1,2,3,8$, and 9 by analogy with those in polyisoprenes (ref 13), carbons $4,5,6$, and 7 by analogy with these in polypentenamers (ref 14), and cis-polyheptenamer (unpublished result). ${ }^{b}$ Chemical shifts are in parts per million from $\mathrm{Me}_{4} \mathrm{Si}$.

